Acute Myocardial Infarction in the Context of Diabetic Ketoacidosis: Pathophysiological Interactions, Clinical Manifestations, and Therapeutic Considerations
Main Article Content
Abstract
Acute myocardial infarction (AMI) and diabetic ketoacidosis (DKA) are two critical conditions that can coexist with significant morbidity and mortality. AMI is a leading cause of cardiovascular death, while DKA is a severe complication of uncontrolled diabetes mellitus, characterized by hyperglycemia, metabolic acidosis, and ketonemia. The convergence of these conditions presents unique challenges in diagnosis and management, as the metabolic disturbances of DKA can exacerbate myocardial ischemia and contribute to poor clinical outcomes. This article aims to explore the pathophysiological interplay between AMI and DKA, focusing on their shared risk factors, metabolic derangements, and the impact of hyperglycemia and ketosis on myocardial oxygen supply and demand. Furthermore, we discuss the clinical presentation, diagnostic strategies, and therapeutic approaches tailored to this dual pathology. Early recognition and prompt intervention are crucial to improving prognosis in patients with coexisting AMI and DKA. Multidisciplinary management involving cardiologists, endocrinologists, and intensivists is essential to mitigate the adverse outcomes of this complex clinical scenario.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
I. Noble-Bell G, Cox A. Management of diabetic ketoacidosis in adults. Nurs Times. 2014;110(10):14–17.
II. Westerberg DP. Diabetic ketoacidosis: evaluation and treatment. Am Fam Physician. 2013;87(5):337–346.
III. .Koye DN, Magliano DJ, Nelson RG, Pavkov ME. The Global Epidemiology of Diabetes and Kidney Disease. Adv Chronic Kidney Dis. 2018;25(2):121–132. doi: 10.1053/j.ackd.2017.10.011.
IV. .Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine (Abingdon) 2014;42(12):698–702. doi: 10.1016/j.mpmed.2014.09.007.
V. Hussain A, Bhowmik B, do Vale Moreira NC. COVID-19 and diabetes: Knowledge in progress. Diabetes Res Clin Pract. 2020;162:108142.
doi: 10.1016/j.diabres.2020.108142.
VI. Rauf A, Abu-Izneid T, Olatunde A. COVID-19 Pandemic: Epidemiology, Etiology, Conventional and Non-Conventional Therapies. Int J Environ Res Public Health. 2020;17(21):E8155.
doi: 10.3390/ijerph17218155. et al. Published 2020 Nov 4.
VII. Bouhanick B, Cracowski J-L, Faillie J-L. Diabetes and COVID-19. Therapies. 2020;75(4):327–333. doi: 10.1016/j.therap.2020.05.006.
VIII. Singh AK, Gupta R, Ghosh A, Misra A. Diabetes in COVID-19: Prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab Syndr. 2020;14(4):303–310.
doi: 10.1016/j.dsx.2020.04.004.
IX. Abdi A, Jalilian M, Sarbarzeh PA, Vlaisavljevic Z. Diabetes and COVID-19: A systematic review on the current evidences. Diabetes Res Clin Pract. 2020;166:108347.
doi: 10.1016/j.diabres.2020.108347.
X. Varikasuvu SR, Dutt N, Thangappazham B, Varshney S. Diabetes and COVID-19: A pooled analysis related to disease severity and mortality. Prim Care Diabetes. 2020. S1751-9918(20)30251-5.
XI. .Orioli L, Hermans MP, Thissen JP, Maiter D, Vandeleene B, Yombi JC. COVID-19 in diabetic patients: Related risks and specifics of management. Annales d’Endocrinologie. 2020;81(2-3):101109. doi: 10.1016/j.ando.2020.05.001.
XII. Apicella M, Campopiano MC, Mantuano M, Mazoni L, Coppelli A, del Prato S. COVID-19 in people with diabetes: understanding the reasons for worse outcomes. The Lancet Diabetes and Endocrinology. 2020;8(9):782–792.
doi: 10.1016/S2213-8587(20)30238-2.
XIII. Zhang JJ, Dong X, Cao YY. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75(7):1730–174.
doi: 10.1111/all.14238. et al.
XIV. Guo W, Li M, Dong Y. diabetes is a risk factor for the progression and prognosis of COVID-19 [published online ahead of print, 2020 Mar 31] Diabetes Metab Res Rev. 2020. p. e3319. et al.
XV. .Singh AK, Gupta R, Ghosh A, Misra A. Diabetes in COVID-19: Prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab Syndr. 2020;14(4):303–310.
doi: 10.1016/j.dsx.2020.04.004.
XVI. Stentz FB, Umpierrez GE, Cuervo R, Kitabchi AE. Pro-inflammatory cytokines, markers of cardiovascular risks, oxidative stress, and lipid peroxidation in patients with hyperglycemic crises. Diabetes. 2004;53(8):2079–2086.
doi: 10.2337/diabetes.53.8.2079.
XVII. Wang ZH, Kihl-Selstam E, Eriksson JW. Ketoacidosis occurs in both Type 1 and Type 2 diabetes--a population-based study from Northern Sweden. Diabet Med. 2008;25(7):867–870.
doi: 10.1111/j.1464-5491.2008.02461.
XVIII. Zhou F, Yu T, Du R. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):10541062.
doi: 10.1016/S0140-6736(20)30566-3. et al.
XIX. Croft A, Bucca A, Jansen JH. First-time Diabetic Ketoacidosis in Type 2 Diabetics With Covid-19 Infection: A Novel Case Series. J Emerg Med. 2020. et al. S0736-4679(20)30699-5
XX. Pal R, Banerjee M, Yadav U, Bhattacharjee S. Clinical profile and outcomes in COVID-19 patients with diabetic ketoacidosis: A systematic review of the literature. Diabetes and Metabolic Syndrome: Clinical Research and Reviews.
;14(6):15631569.
doi: 10.1016/j.dsx.2020.08.015.
XXI. .Umpierrez GE, Kitabchi AE. Diabetic ketoacidosis: risk factors and management strategies. Treat Endocrinol. 2003;2(2):95108.
doi: 10.2165/00024677-200302020-00003.