Electric Burn Injury and Cardiac Autonomic Function

Main Article Content

Ahmad Fawzy

Abstract

Electrical injuries are a common form of mechanical trauma that can cause significant damage to the skin and underlying tissues, as well as potentially affect other systems of the body, including the cardiovascular system. Electric burn injury can affect cardiac autonomic function, potentially leading to arrhythmias and heart failure.


The autonomic nervous system plays a critical role in regulating cardiac function, acting as the primary regulator of heart rate and contractility. The balance between the two systems, sympathetic and parasympathetic, is essential for optimal cardiovascular function and can be assessed through measures of cardiac autonomic function. The most commonly utilized method is using the electrocardiogram (ECG) in combination with the impedance cardiogram (ICG). The pre-ejection period (PEP) can be extracted from ECG during the left ventricular ejection as a measure of cardiac sympathetic control, and the respiratory sinus arrhythmia can be extracted from ECG during respiration as a measure of cardiac parasympathetic control.


This literature review explores the current understanding of how electric burn injury affects cardiac autonomic function and its potential influence on cardiac function. It also emphasize the need of further research to understand the precise mechanisms involved in the effects of electric burn injury on cardiac autonomic function and to develop effective treatment strategies to prevent adverse cardiovascular outcomes.

Article Details

How to Cite
Fawzy, A. . (2023). Electric Burn Injury and Cardiac Autonomic Function. International Journal of Medical Science and Clinical Research Studies, 3(11), 2729–2733. https://doi.org/10.47191/ijmscrs/v3-i11-35
Section
Articles

References

I. Burnham T, Hilgenhurst G, McCormick ZL. Second-degree Skin Burn from a Radiofrequency Grounding Pad: A Case Report and Review of Risk-Mitigation Strategies. PM R. 2019 Oct;11(10):1139-1142.

II. Kim MS, Lee SG, Kim JY, Kang MY. Maculopathy from an accidental exposure to welding arc. BMJ Case Rep. 2019 Feb 03;12(2)

III. Carrano FM, Iezzi L, Melis M, Quaresima S, Gaspari AL, Di Lorenzo N. A Surgical Instrument Cover for the Prevention of Thermal Injuries During Laparoscopic Operations. J Laparoendosc Adv Surg Tech A. 2019 Jan 30

IV. Lovaglio AC, Socolovsky M, Di Masi G, Bonilla G. Treatment of neuropathic pain after peripheral nerve and brachial plexus traumatic injury. Neurol India. 2019 Jan-Feb;67(Supplement):S32-S37.

V. Trivedi TK, Liu C, Antonio ALM, Wheaton N, Kreger V, Yap A, Schriger D, Elmore JG. Injuries Associated With Standing Electric Scooter Use. JAMA Netw Open. 2019 Jan 04;2(1):e187381.

VI. Bailey ME, Sagiraju HKR, Mashreky SR, Alamgir H. Epidemiology and outcomes of burn injuries at a tertiary burn care center in Bangladesh. Burns. 2019 Jun;45(4):957-963.

VII. Von Caues S, Herbst CI, Wadee SA. A retrospective review of fatal electrocution cases at Tygerberg Forensic Pathology Services, Cape Town, South Africa, over the 5-year period 1 January 2008 - 31 December 2012. S Afr Med J. 2018 Nov 26;108(12):1042-1045.

VIII. Wardhana A, Winarno GA. Epidemiology and mortality of burn injury in CIipto Mangunkusumo Hospital, Jakarta: A 5 year retrospective study. Jurnal Plastik Rekonstruksi. 2020;6(1):234–42.

IX. Ulucan Ş, Kaya Z, Keser A, Katlandur H, Karanfil M, Ateş İ. Deterioration of heart rate recovery index in patients with erectile dysfunction. Anatol J Cardiol. 2016 Apr;16(4):264-9. DOI: 10.5152/AnatolJCardiol.2015.6132.

X. Paszkowska, A. et al. (2022) "Clinical Presentation of Left Ventricular Noncompaction Cardiomyopathy and Bradycardia in Three Families Carrying HCN4 Pathogenic Variants," Genes, 13(3),p. 477. Available at: https://doi.org/10.3390/genes13030477.

XI. Kloter, E. et al. (2018) "Heart Rate Variability as a Prognostic Factor for Cancer Survival – A Systematic Review," Frontiers in Physiology, 9. Available at: https://doi.org/10.3389/fphys.2018.00623.

XII. Thungtong, A. (2021) "Open Source Software Tools for Sequential Analysis and Comparison of Heart Rate Variability in Large Cohort Studies," Walailak Journal of Science and Technology (Wjst), 18(11). Available at: https://doi.org/10.48048/wjst.2021.10566.

XIII. Dhakal, P. et al. (2015) "Renal Denervation in Heart Failure: A New Therapeutic Paradigm," Clinical Medicine Insights Cardiology, 9s1,p. CMC.S18754. Available at: https://doi.org/10.4137/cmc.s18754.

XIV. Liu, Y. et al. (2021) "Impaired regulation of heart rate and sinoatrial node function by the parasympathetic nervous system in type 2 diabetic mice," Scientific Reports, 11(1). Available at: https://doi.org/10.1038/s41598-021-91937-2.

XV. Vaseghi M, Shivkumar K. The role of the autonomic nervous system in sudden cardiac death. Prog Cardiovasc Dis. 2008 May-Jun;50(6):404-19. DOI: 10.1016/j.pcad.2008.01.003.

XVI. Shen MJ, Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res. 2014 Mar 14;114(6):1004-21. DOI: 10.1161/CIRCRESAHA.113.302549.

XVII. Manolis AA, Manolis TA, Apostolopoulos EJ, Apostolaki NE, Melita H, Manolis AS. The role of the autonomic nervous system in cardiac arrhythmias: The neuro-cardiac axis, more foe than friend? Trends Cardiovasc Med. 2021 Jul;31(5):290-302.

DOI: 10.1016/j.tcm.2020.04.011.

XVIII. van Dijk AE, van Lien R, van Eijsden M, Gemke RJ, Vrijkotte TG, de Geus EJ. Measuring cardiac autonomic nervous system (ANS) activity in children. J Vis Exp. 2013 Apr 29;(74):e50073. DOI: 10.3791/50073.

XIX. Shaffer F, Ginsberg JP. An Overview of heart rate variability metrics and norms. Front Public Health. 2017 Sep 28;5:258.

DOI: 10.3389/fpubh.2017.00258.

XX. Ding W, Zhou L, Bao Y, Zhou L, Yang Y, Lu B, Wu X, Hu R. Autonomic nervous function and baroreflex sensitivity in hypertensive diabetic patients. Acta Cardiol. 2011 Aug;66(4):465-70. DOI: 10.1080/ac.66.4.2126595.

XXI. Santos MRD, Sayegh ALC, Armani R, Costa-Hong V, Souza FR, Toschi-Dias E, Bortolotto LA, Yonamine M, Negrão CE, Alves MNN. Resting spontaneous baroreflex sensitivity and cardiac autonomic control in anabolic androgenic steroid users. Clinics (Sao Paulo). 2018 May 21;73:e226. DOI: 10.6061/clinics/2018/e226.

XXII. Athira SB, Pal P, Nair PP, Nanda N, Aghoram R. Cardiovascular autonomic function and baroreflex sensitivity in drug-resistant temporal lobe epilepsy. Epilepsy Behav. 2023 Jan;138:109013. DOI: 10.1016/j.yebeh.2022.109013.

XXIII. Kamath MV, Fallen EL. Power spectral analysis of heart rate variability: a noninvasive signature of cardiac autonomic function. Crit Rev Biomed Eng. 1993;21(3):245-311.

XXIV. Toichi M, Sugiura T, Murai T, Sengoku A. A new method of assessing cardiac autonomic function and its comparison with spectral analysis and coefficient of variation of R-R interval. J Auton Nerv Syst. 1997 Jan 12;62(1-2):79-84. DOI: 10.1016/s0165-1838(96)00112-9.

XXV. Sidorenko L, Kraemer JF, Wessel N. Standard heart rate variability spectral analysis: does it purely assess cardiac autonomic function? Europace. 2016 Jul;18(7):1085. DOI: 10.1093/europace/euw078.

XXVI. Lee RC. Cell injury by electric forces. Ann N Y Acad Sci. 2005 Dec;1066:85-91. DOI: 10.1196/annals.1363.007.

XXVII. Joo SY, Hong AR, Lee BC, Choi JH, Seo CH. Autonomic nerve activity indexed using 24-H heart rate variability in patients with burns. Burns. 2018 Jun;44(4):834-840.

DOI: 10.1016/j.burns.2017.12.012.

XXVIII. Favia M, Mele F, Introna F, De Donno A. Morphological cardiac changes in electrocution deaths: A literature review. Med Sci Law. 2021 Jan;61(1_suppl):130-135.

DOI: 10.1177/0025802420967539.

DeJesus JE, Wen JJ, Radhakrishnan R. Cytokine pathways in cardiac dysfunction following burn injury and changes in genome expression. Journal of Personalized Medicine. 2022; 12(11):1876.

DOI: 10.3390/jpm12111876.