Reviewing Advances in Skin Grafting for Diabetic Foot Ulcers

Main Article Content

Ahmad Fawzy
Ivory Benaziria

Abstract

Diabetic foot ulcers (DFUs) represent a significant health concern linked to poorly managed diabetes, affecting 19% to 34% of diabetic individuals and resulting in impaired functionality, infections, hospitalization, and the potential for amputations or mortality. Effective management involves addressing hyperglycemia, risk factors, and utilizing classification systems like SINBAD and IDSA/IWGDF for treatment. Skin grafting techniques such as split-thickness (STSG) and full-thickness (FTSG) grafts offer effective wound closure options. We acknowledged management for diabetic foot ulcers (DFUs) include autografts, cadaveric allografts, xenografts, and synthetic skin substitutes with natural polymers. Advanced techniques encompass biomaterials, nanobiomaterials, endothelial progenitor cells, and tissue engineering, while cellular therapies like mesenchymal stem cells (MSCs) show promise when properly activated. Innovations in DFU management encompass 3D bioprinting, nanotechnology, gene therapy, and photobiomodulation therapy. Positive clinical outcomes from skin grafting, including acellular fish skin (AFS) grafts, are observed, although challenges like graft rejection and limited technology awareness persist. Further research is essential to seamlessly integrate these advancements into DFU management for enhanced outcomes.


 

Article Details

How to Cite
Fawzy, A., & Ivory Benaziria. (2023). Reviewing Advances in Skin Grafting for Diabetic Foot Ulcers. International Journal of Medical Science and Clinical Research Studies, 3(9), 1874–1884. https://doi.org/10.47191/ijmscrs/v3-i9-14
Section
Articles

References

I. McDermott K, Fang M, Boulton AJM, Selvin E, Hicks CW. Etiology, epidemiology, and disparities in the burden of diabetic foot ulcers. Diabetes Care. 2022;46(1):209–21. DOI:10.2337/dci22-0043

II. Doğruel H, Aydemir M, Balci MK. Management of diabetic foot ulcers and the challenging points: An endocrine view. World Journal of Diabetes. 2022;13(1):27–36. DOI:10.4239/wjd.v13.i1.27

III. Bordianu A, Bobircă F, Pătraşcu T. Skin grafting in the treatment of diabetic foot soft tissue defects. Chirurgia. 2018;113(5):644. DOI:10.21614/chirurgia.113.5.644

IV. Monteiro‐Soares M, Boyko EJ, Jeffcoate W, Mills JL, Russell D, Morbach S, et al. Diabetic foot ulcer classifications: A critical review. Diabetes/Metabolism Research and Reviews. 2020;36(S1). DOI:10.1002/dmrr.3272

V. Przekora A. A concise review on tissue engineered artificial skin grafts for chronic wound treatment: Can we reconstruct functional skin tissue in vitro? Cells. 2020;9(7):1622. DOI:10.3390/cells9071622

VI. Brockmann I, Ehrenpfordt J, Sturmheit T, Brandenburger M, Kruse C, Zille M, et al. Skin-derived stem cells for wound treatment using cultured epidermal autografts: Clinical applications and challenges. Stem Cells International. 2018;2018:1–9. doi:10.1155/2018/4623615

VII. Anderson JJ, Wallin KJ, Spencer L. Split thickness skin grafts for the treatment of non-healing foot and leg ulcers in patients with diabetes: a retrospective review. Diabet Foot Ankle. 2012;3. DOI: 10.3402/dfa.v3i0.10204

VIII. Popa LG, Giurcaneanu C, Mihai MM, Beiu C, Orzan OA, Negoita S, et al. The use of cadaveric skin allografts in the management of extensive wounds. Romanian Journal of Legal Medicine. 2021;29(1):37–44. DOI:10.4323/rjlm.2021.37

IX. Chandra A, Barron I. Traumatic amputation: Healing the acute lawn mower injury- A case report. Foot & Ankle Surgery: Techniques, Reports & Cases. 2022;2(4):100247. DOI:10.1016/j.fastrc.2022.100247

X. Dai C, Shih S, Khachemoune A. Skin substitutes for acute and chronic wound healing: An updated review. Journal of Dermatological Treatment. 2020;31(6):639–48. DOI:10.1080/09546634.2018.1530443

XI. Singh AV, Gemmati D, Kanase A, Pandey I, Misra V, Kishore V, et al. Nanobiomaterials for vascular biology and wound management: A Review. Veins and Lymphatics. 2018;7(2). DOI:10.4081/vl.2018.7196

XII. Tavakoli S, Klar AS. Bioengineered skin substitutes: Advances and future trends. Applied Sciences. 2021;11(4):1493. DOI:10.3390/app11041493

XIII. Martin-Piedra M, Alfonso-Rodriguez C, Zapater A, Durand-Herrera D, Chato-Astrain J, Campos F, et al. Effective use of mesenchymal stem cells in human skin substitutes generated by tissue engineering. European Cells and Materials. 2019;37:233–49. DOI:10.22203/ecm.v037a14

XIV. Rademakers T, Horvath JM, Blitterswijk CA, LaPointe VLS. Oxygen and nutrient delivery in tissue engineering: Approaches to graft vascularization. Journal of Tissue Engineering and Regenerative Medicine. 2019;13(10):1815–29. DOI:10.1002/term.2932

XV. Li M, Jiang Y, Hou Q, Zhao Y, Zhong L, Fu X. Potential pre-activation strategies for improving therapeutic efficacy of mesenchymal stem cells: Current status and future prospects. Stem Cell Research & Therapy. 2022;13(1). DOI:10.1186/s13287-022-02822-2

XVI. 1. Tan CT, Liang K, Ngo ZH, Dube CT, Lim CY. Application of 3D bioprinting technologies to the management and treatment of diabetic foot ulcers. Biomedicines. 2020;8(10):441. DOI:10.3390/biomedicines8100441

XVII. Small, M., Faglie, A., Craig, A. J., Pieper, M., Fernand Narcisse, V. E., Neuenschwander, P. F., Chou, S. F. 2018. Nanostructure-enabled and Macromolecule-Grafted Surfaces For Biomedical Applications. Micromachines. Vol 9(5): 243.

XVIII. Sinclair A, Islam S, Jones S. Gene Therapy: An Overview of Approved and Pipeline Technologies. 2018 Mar 1. In: CADTH Issues in Emerging Health Technologies. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; 2016–. 171.

XIX. Mosca RC, Ong AA, Albasha O, Bass K, Arany P. Photobiomodulation therapy for wound care: A potent, noninvasive, photoceutical approach. Advances in Skin & Wound Care. 2019;32(4):157–67.

DOI:10.1097/01.asw.0000553600.97572.d2

XX. Yammine, K., Assi, C. 2019. A Meta-Analysis Of The Outcomes Of Split-Thickness Skin Graft On Diabetic Leg And Foot Ulcers. The International Journal of Lower Extremity Wounds. Vol 18(1): 23-30.

XXI. Ahn J-Y. Clinical outcomes of full thickness skin graft combined with negative pressure wound therapy in diabetes mellitus foot amputee after infection. Foot & Ankle Orthopaedics. 2017;2(3). DOI:10.1177/2473011417s000088

XXII. Ibrahim M, Ayyoubi HS, Alkhairi LA, Tabbaa H, Elkins I, Narvel R. Fish skin grafts versus alternative wound dressings in wound care: A systematic review of the literature. Cureus. 2023; DOI:10.7759/cureus.36348