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ABSTRACT 

 

 
ARTICLE DETAILS 

 
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that primarily 

affects motor neurons, leading to muscle weakness and eventual paralysis. Although the precise 

mechanisms driving ALS are not yet fully elucidated, emerging evidence suggests a crucial role 

of neuroinflammation and mitochondrial dysfunction in disease progression. Microglia, the 

brain’s resident immune cells, play a central role in the neuroinflammatory response and undergo 

metabolic reprogramming during ALS, shifting from a homeostatic state to an inflammatory one. 

This reactivity is linked to mitochondrial dysfunction, which impairs energy production but 

allows microglia to maintain a pro-inflammatory phenotype through alternative pathways, such 

as glycolysis. This interaction between mitochondrial metabolism and microglial function 

exacerbates neuroinflammation, contributing to neuronal damage and accelerating ALS 

pathology. Mutations in genes like C9ORF72, SOD1, and TARDBP, commonly associated with 

ALS, also affect cellular processes such as RNA metabolism and mitochondrial function, further 

worsening the effects of the disease. This review explores the role of microglial mitochondrial 

metabolism in ALS, highlighting its importance in disease progression and identifying potential 

therapeutic targets to modulate neuroinflammation and metabolic dysfunction to slow ALS 

progression. 
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INTRODUCTION 

Amyotrophic lateral sclerosis (ALS) is the third 

most common neurodegenerative disorder, following 

Alzheimer’s and Parkinson’s diseases (Vahsen et al., 2021). 

It is a heterogeneous neurodegenerative disease primarily 

characterized by the degeneration of upper motor neurons, 

which extend from the cortex to the brainstem and spinal 

cord, and lower motor neurons, which project to muscles. 

This leads to motor and extra-motor symptoms, with 

progressive muscle weakness being the most prominent 

feature (Hardiman et al., 2017). ALS affects 1 to 2.6 

individuals per 100,000 annually, with the onset typically 

between 58 and 60 years of age (Talbott, Malek e Lacomis, 

2016). Survival following diagnosis ranges from 2 to 4 years, 

and due to population aging, ALS cases are expected to 

increase by nearly one-third in the next decade (Arthur et al., 

2016). This rising prevalence underscores the urgent need to 

gain deeper insight into the underlying mechanisms of ALS, 

including the role of immune responses and 

neuroinflammation in disease progression. 

The brain is an immunologically active organ with 

an innate and adaptative immune system. Microglia are one 

https://doi.org/10.47191/ijmscrs/v4-i12-16
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of the brain's primary immune cells, responsible for 

maintaining cerebral homeostasis and protecting 

neuroimmune environment while also playing a key role in 

neurodegenerative processes (Scheiblich et al., 2020; Wang, 

Q. et al., 2022). In diseases such as ALS, neuroinflammation 

triggers metabolic reprogramming in these cells, shifting 

them from a homeostatic resting state to a reactive one. 

Neuroinflammation refers to the cellular and molecular 

processes that involve the activation of microglia and 

astrocytes and the infiltration of peripheral immune cells. 

Recent genetic and imaging studies, primarily clinical, 

indicate that microglia are essential in driving 

neuroinflammation and subsequent pathology of ALS. These 

findings are supported by pre-clinical studies that utilize 

animal and in vitro models to replicate human disease, 

providing a foundation for the molecular understanding of 

ALS(Ashford et al., 2021; Wang, M.-J. et al., 2022). Growing 

evidence shows that this reprogramming is linked to energy, 

lipid, and iron metabolism, with microglia rapidly altering 

their energy metabolism to adapt to the neurodegenerative 

environment (Wang, Q. et al., 2022).  

Mutations in over thirty genes and loci have been 

associated with ALS. Still, the most affected are C9ORF72, 

SOD1, TARDBP, and FUS. While these mutations are not 

specific to microglia, they are linked to disruptions in RNA 

metabolism and translational biology, as well as 

mitochondrial dysfunction and oxidative stress (Cook e 

Petrucelli, 2019; Falabella et al., 2021; Mathis et al., 2019). 

These mutations disrupt several key cellular pathways, 

including RNA processing, protein homeostasis, axonal 

transport, and mitochondrial function, all contributing to 

neurodegeneration (Lewinski e Keller, 2005; Weishaupt, 

Hyman e Dikic, 2016). 

Emerging studies suggest that the interaction 

between microglia and mitochondrial metabolism plays a 

crucial role in the progression of neurodegeneration in ALS. 

Mitochondrial dysfunction in microglia impairs energy 

production but paradoxically allows these cells to sustain a 

reactive phenotype, potentially via alternative metabolic 

pathways like glycolysis. This sustained reactivity 

exacerbates neuroinflammation, worsening ALS pathology. 

Rather than resolving inflammation or clearing debris, as seen 

in Alzheimer’s, reactive microglia in ALS may amplify 

neuronal damage by releasing pro-inflammatory cytokines 

and ROS, marking a key point of disease progression (Harvey 

et al., 2024; Neel et al., 2023). Understanding how these 

metabolic alterations in microglia contribute to neuronal 

damage offers promising avenues for identifying therapeutic 

targets aimed at slowing or halting the progression of the 

disease. Despite advances in understanding its molecular 

basis, ALS remains a fatal disease with no cure, highlighting 

the importance of continued research into its pathogenesis 

and possible therapeutic targets. 

 

Physiopathology of ALS 

The clinical presentation of ALS is heterogeneous, 

depending on the regions of the brain or spinal cord affected. 

Symptoms usually begin in a localized area but gradually 

spread to adjacent regions of the neuroaxis. Upper motor 

neuron involvement leads to weakness, spasticity (muscle 

rigidity), and loss of motor control in the limbs, while 

degeneration of lower motor neurons results in muscle 

atrophy, cramps, and fasciculations (involuntary muscle 

contractions) (Brown e Al-Chalabi, 2017). In some cases, the 

disease begins with dysfunction of the bulbar nuclei, 

responsible for various vital functions of the body. As a result, 

the clinical manifestations include progressive dysarthria 

(speech difficulties), followed by dysphagia (difficulty 

swallowing), breathing problems, facial muscle weakness, 

and emotional instability (Hardiman et al., 2017). 

ALS can be classified into familiar (10% of cases) 

and sporadic (90%) forms. Familial ALS is often associated 

with other neurological conditions, such as frontotemporal 

dementia, while the causes of sporadic ALS remain largely 

unknown. Regardless of form, ALS leads to progressive 

motor neuron loss and muscle atrophy, with the involvement 

of both upper and lower motor neurons typically having 

shorter survival, especially when progressive bulbar palsy is 

present, which can reduce survival to 1-4 years from 

diagnosis (Grad et al., 2017). 

Diagnosing ALS is challenging due to the variability 

in clinical presentation and the similarity of early symptoms 

with other conditions, such as neuropathies or vascular 

disorders, which often leads to delays and misdiagnoses 

(Bradford e Rodgers, 2024). Electromyography is a key 

diagnostic tool, with active (AD) and chronic (CD) 

denervation serving as markers of disease progression and 

physiological disability (Colombo et al., 2023). ALS 

diagnosis is confirmed clinically by observing motor neuron 

dysfunction in the absence of an alternative explanation, 

supported by imaging and electromyography (Ilieva, 

Vullaganti e Kwan, 2023). Advanced techniques, such as 

MRI and biomarker analysis in body fluids, further aid in 

diagnosis (Xu e Xu, 2024). 

A significant feature of ALS is the 

neurodegeneration of the medulla oblongata, which is 

responsible for speaking and swallowing functions. 

Dysarthria and dysphagia are common and can appear either 

in the disease or during its progression (Yunusova et al., 

2019). The Revised ALS Functional Assessment Scale 

(ALSFRS-R) is widely used to assess bulbar function, 

including speech, swallowing, and salivation (Plowman et al., 

2017). Cognitive and behavioral symptoms may also arise, 

particularly in cases associated with frontotemporal 

dementia. These impairments can affect information 

processing, emotional regulation, memory, and social 

interactions, further complicating disease management 

(Rusina, Vandenberghe e Bruffaerts, 2021). 
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The pathophysiology of ALS involves disruptions in 

several molecular pathways, including autophagy, which 

plays a central role in the disease. Mutations in key genes, 

such as superoxide dismutase 1 (SOD1) and ubiquitin 

2 (UBQLN2), contribute to the pathogenesis of ALS. 

Mutations in SOD1, which normally protects neurons from 

oxidative damage, lead to toxic protein aggregation and 

oligodendrocyte degeneration, compromising myelin 

production and disrupting nerve signal conduction. Similarly, 

mutations in UBQLN2 impair damaged proteins' degradation, 

causing abnormal protein aggregate accumulation, which 

induces cellular stress, mitochondrial dysfunction, and 

neuroinflammation, particularly in motor neurons (Nguyen, 

Thombre e Wang, 2019). 

Microglia and neuroinflammation 

Microglia are the primary immune cells involved in 

neurodegenerative and inflammatory pathogenesis in the 

central nervous system (CNS). These cells originate from 

primitive myeloid progenitors, specifically from 

macrophages derived from the yolk sac, which appear before 

the eighth embryonic day and invade CNS (Ginhoux et al., 

2010). Studies show that microglia can recruit monocyte-

derived macrophages by producing attractive factors such as 

the chemokine monocyte chemoattractant protein-1 - MCP-1 

(CCL2) a common outcome in various neuroinflammation 

contexts (Figure 1). This suggests that without microglia 

activity, there would be a delay in the macrophage response 

within the CNS (Brennan et al., 2022). The CCL2 chemokine 

acts through a binding axis to the CC chemokine receptor type 

2 (CCR2) and 4 (CCR4) receptors, thereby promoting 

macrophage recruitment (Pan et al., 2020). 

Another factor that supports the infiltration of 

macrophages into the CNS is the reduction in monocyte 

levels in peripheral blood in cases of ALS (Mantovani et al., 

2009). Studies indicate that in an inflammatory brain 

environment with degenerating neurons, the integrity of the 

blood-brain barrier is compromised, allowing peripheral 

immune cells into the CNS. This breakdown of the blood-

brain barrier can be attributed to factors such as endothelial 

cell degeneration, perivascular edema, and capillary leakage 

(Garbuzova-Davis e Sanberg, 2014). 

One theory currently under investigation regarding 

communication between cells from different environments 

involves extracellular vesicles (EVs), which can carry 

information such as nucleic acids, proteins, and metabolites. 

This interaction can alter the microenvironment and influence 

disease progression (Berumen Sánchez et al., 2021). EVs can 

cross the blood-brain barrier and enter the bloodstream or 

modify its structure. In this manner, cells from different 

environments can communicate via extracellular vesicles as 

mediators following a stimulus. This cell signaling facilitates 

macrophage recruitment to the brain, contributing to the 

inflammatory and degenerative state (Saint-Pol et al., 2020). 

Thus, the interplay between glial cells, EVs, and 

macrophages may represent a crucial mechanism for 

recruiting immune cells to the brain and promoting ALS 

pathogenesis. 

In the pathological context of ALS, both resident and 

infiltrating macrophages play significant roles. Initially, they 

exhibit a protective, but later, they shift to a degenerative and 

inflammatory role in the advanced stages of the disease. 

Consequently, macrophages not only perform their natural 

phagocytic functions but also promote cytokine release as 

part of the immune response (Rios et al., 2021). 

Crosstalk Between Neurons and Microglia 

Activated microglia present two distinct phenotypes: 

neurotoxic and neuroprotective. The first one corresponds to 

pro-inflammatory (activated via the classical pathway) and 

anti-inflammatory (activated via the alternative pathway) 

responses (Lyu et al., 2021). Classically activated microglia 

exhibit a cytotoxicity profile characterized by the production 

of reactive oxygen species (ROS) and the release of pro-

inflammatory cytokines, including interleukin (IL)-1β, IL-6, 

IL-12, and tumor necrosis factor (TNF)-α (Colonna e 

Butovsky, 2017; Liddelow et al., 2017). Furthermore, 

excessive pro-inflammatory activation can lead to a 

phenotypic transition from alternative to classical microglia, 

which increases neurotoxicity and contributes to a more 

severe progression of disease (Kwon e Koh, 2020). 

Conversely, activated microglia exhibit neuroprotective 

activity through the secretion of anti-inflammatory cytokines 

such as IL-10 and transforming growth factor (TGF)-β 

(Butovsky et al., 2014). They also produce fibroblast growth 

factor (FGF), colony-stimulating factors (CSF1), and 

neuronal growth factor (NGF) and stimulate the phagocytosis 

of misfolded proteins and cellular debris (Saijo, Crotti e 

Glass, 2013). Initially, activated microglia plays a 

neuroprotective role at the onset of ALS; however, as the 

disease progresses, there may be a shift from a 

neuroprotective to a neurotoxic profile (Liao et al., 2012). 

The polarization of microglial profiles in ALS is 

multifactorial, influenced by damage-associated molecular 

patterns (DAMPs), neuronal damage-associated molecular 

patterns (NAMPs), as well cytokines, chemokines, and 

oxidative stress(Shi e Zhu, 2023; Tortelli et al., 2020). 

In ALS, neuroinflammation is mediated by misfolded 

proteins resulting from mutations primarily in Transactive 

response DNA-binding protein 43 (TARDBP), RNA-binding 

protein fused in sarcoma/translocated in liposarcoma (FUS), 

chromosome 9 open reading frame 72 (C9orf72), and 

superoxide dismutase type 1 (SOD1) (Berdyński et al., 2022; 

Hao et al., 2020; White et al., 2018). Additionally, mutations 

in multifunctional proteins involved in innate immune 

responses, along with variations in cytokine and chemokine 

receptors, can promote an initial pro-inflammatory activity 

characteristic of a classically activated microglial profile 



Interaction between Microglia and Mitochondrial Metabolism in the Development of Amyotrophic Lateral Sclerosis 

(ALS) 

2274     Volume 04 Issue 12 December 2024                                    Corresponding Author: Tarcio Teodoro Braga 

(Cognata, La et al., 2024). However, despite this initial pro-

inflammatory state, crosstalk between neuronal cells can 

facilitate the transition to an alternative microglial profile, 

thereby reducing neuroinflammation. For example, microglia 

produce IL-10, which binds to IL-10R receptors on 

astrocytes, prompting them to secrete TGF-β and polarizing 

microglia towards an anti-inflammatory profile (Norden et 

al., 2014).  In contrast, healthy neurons in an inflammatory 

environment also contribute to the reduction of inflammation 

through the release of CD200 and fractalkine (CX3CL1). 

These molecules attenuate microglial activation via CD200r 

and CX3CR1 receptors, promoting a more anti-inflammatory 

profile at the onset of the disease through the secretion of IL-

4, insulin-like growth factor (IGF)-1, Brain-derived 

neurotrophic factor (BDNF), and IL-10 (Béland et al., 2020; 

Inoue et al., 2021; Yi et al., 2012).  

Additionally, chronic DAMPS stimuli, such as protein 

aggregates, exogenous ATP, and cellular debris, bind to 

receptors like tool-like receptors (TLRs), purinergic 

receptors, and triggering receptor expressed on myeloid cells 

2 (TREM2) on microglial cell membranes and can drive the 

transition from an anti-inflammatory to a pro-inflammatory 

profile (Calovi, Mut-Arbona e Sperlágh, 2019; Colonna, 

2023; Fiebich et al., 2018). This reduces negative co-

stimulation, typically mediated by C-X3-C Motif Chemokine 

Ligand 1 (CX3CL1) and OX-2 membrane glycoprotein 

(CD200), and promotes the increased release of pro-

inflammatory factors such as TNF-α, IL-1β, IL-6, reactive 

oxygen species (ROS), and reactive nitrogen species (RNS). 

Ultimately, this cascade triggers neuronal degeneration on a 

large scale (Fan et al., 2023; Hickman et al., 2018). 

Metabolic Reprogramming in Neuroinflammation 

Under homeostatic conditions, microglia function as 

sentinel cells in the brain, using glucose as their primary 

energy source for adenosine triphosphate (ATP) production 

(Bernier et al., 2020). Glucose is internalized into the 

microglial cytoplasm via GLUT transporters and metabolized 

through oxidative phosphorylation (OXPHOS). In this 

process, glucose initially undergoes glycolysis, producing 

pyruvate and lactate. Pyruvate, in turn, can also enter the 

mitochondria to form acetyl-CoA and initiate the 

tricarboxylic acid (TCA) cycle, ultimately generating ATP 

via OXPHOS (Caputa, Castoldi e Pearce, 2019). 

Alternatively, glucose may be metabolized via the pentose 

phosphate pathway, generating nicotinamide adenine 

dinucleotide phosphate hydrogen (NADPH), which can lead 

to the production of ROS and components that support 

nucleotide synthesis, facilitating phagocytosis (Gimeno‐

Bayón et al., 2014). However, in pathological conditions 

affecting the brain, such as ALS, microglia demonstrate the 

ability to utilize other substrates for energy production 

(Fairley, Wong e Barron, 2021). 

In a neuroinflammatory environment, microglia 

undergo metabolic reprogramming towards a pro-

inflammatory profile, favoring glycolysis as their primary 

energy source (Vandoorne, Bock, De e Bosch, Van Den, 

2018). This shift in metabolites increases NADH levels, 

promoting the formation of C-terminal binding protein 

(CtBP) dimers, which results in the release of p300, an 

acetyltransferase that acetylates subunit p65 of nuclear factor 

kappa-beta (NF-κB). This acetylation triggers the release of 

pro-inflammatory cytokines TNF-α and IL-6 (Shen et al., 

2017). Conversely, hypoxia induces a different response. 

During hypoxia, there is an increase in the transcription and 

activity of hexokinases, which convert glucose into glucose-

6-phosphate. This process is accompanied by the 

upregulation of 6-phosphofructo-2-kinase/fructose-2,6-

biphosphatase 3 (PFKFB3), further promoting glycolysis and 

resulting in elevated levels of pyruvate and acetyl-CoA. 

While the specific TCA cycle metabolites that accumulate in 

microglia remain unclear, evidence from pro-inflammatory 

macrophages suggests that similar metabolites – such as 

citrate, succinate, fumarate, malate, and oxaloacetate – may 

also accumulate in microglia (Jha et al., 2015; O’Neill e 

Pearce, 2016). Additionally, evidence suggests that pro-

inflammatory microglia stimulate the mTOR-HIF-1α axis, 

leading to an increased expression of GLUTs transporters and 

enhanced transcription of pro-inflammatory cytokines 

mediated by activator protein 1 (AP-1) and NF-κB (Bernier, 

York e MacVicar, 2020; Christoforidou, Joilin e Hafezparast, 

2020) (Figure 1). 

As previously mentioned, under homeostatic 

conditions, microglia primarily utilize the OXPHOS pathway 

for energy production. However, in pro-inflammatory 

environments, metabolic reprogramming tends to shift 

toward glycolytic pathways. Evidence suggests that in ALS, 

mutations in SOD1 and C9orf72 contribute to this shift 

towards glycolysis and a reduction in OXPHOS activity. This 

shift is driven by the upregulation of hexokinase-2, lactate 

dehydrogenase, mTOR, and the activation of the NOD-like 

receptor family pyrin domain containing 3 (NLRP3) 

inflammasome, polarizing microglia toward a neurotoxic 

phenotype (Miao et al., 2023).  

While little is known about anti-inflammatory 

metabolic reprogramming in ALS, it is established that 

neuroprotective microglia decrease glycolysis and increase 

OXPHOS, thereby reducing ROS production and promoting 

the expression of 5'-prime-AMP-activated protein kinase 

(AMPK), which modulates a neuroprotective phenotype 

through the stimulation of IL-4, TGF-β, signal transducer and 

activator of transcription 3 (STAT3), and IL-10. Additionally, 

evidence suggests that beta-oxidation of fatty acids, regulated 

by the activation of proliferator-activated receptors (PPARs) 

and liver X receptors (LXRs), supports the use of fatty acids 

as an energy source and helps maintain lipid homeostasis. 

This process reduces ROS production and encourages the 
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maintenance of a neuroprotective phenotype (Wang, Q. et al., 

2022). 

Impact of Mitochondrial Dysfunction in Glial Cells on 

ALS Progression 

Under physiological conditions, the CNS, which 

includes astrocytes, oligodendrocytes, microglia, and 

ependymal cells, exhibits compartmentalized metabolic 

activity to ensure its proper functioning. The CNS relies on 

key metabolites, such as glucose, glutamate, and ketone 

bodies, as energy substrates (Vandoorne, Bock, De e Bosch, 

Van Den, 2018). Glucose supports the glycolytic pathway, 

the TCA cycle, and the OXPHOS chain, providing ample 

energy support to maintain CNS functions (Yu et al., 2024). 

Adequate oxidation of glutamate plays a critical role in 

protecting neurons from excitotoxic cell death (Divakaruni et 

al., 2017). Additionally, the metabolism of ketone bodies 

ensures CNS functionality during periods of glucose 

deprivation, allowing the system to maintain homeostasis and 

meet neural demands (Vandoorne, Bock, De e Bosch, Van 

Den, 2018). 

From the neuroimmunometabolic perspective, cells 

such as astrocytes and neurons exhibit different preferences 

for metabolic substrates. Neurons demonstrate a lower 

glycolytic rate under homeostatic conditions due to the 

continuous degradation of 6-phosphofructo-2-

kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a positive 

modulator of the glycolytic pathway, mediated by the 

anaphase/cyclosome E3 ubiquitin ligase (APC/C) promoter 

complex - CDH1 (Bolaños, Almeida e Moncada, 2010). This 

leads to a reduction in glycolytic activity and an increase in 

oxidative potential, particularly the robust functioning of the 

oxidative phosphorylation chain(Bolaños, Almeida e 

Moncada, 2010; Vandoorne, Bock, De e Bosch, Van Den, 

2018). Furthermore, in neurons, glucose serves as a crucial 

substrate for the activation of the pentose phosphate pathway 

(PPP). By increasing the concentration of glucose-6-

phosphate (G6P) and subsequently activating the PPP, 

glucose enables the regeneration of reduced glutathione, 

thereby ensuring the antioxidant capacity of neurons 

(Vandoorne, Bock, De e Bosch, Van Den, 2018). With an 

adequate supply of reduced glutathione, continuous 

neuroprotective activity is maintained, which helps preserve 

mitochondrial membrane potential (Δψm) and prevents 

neurons from undergoing apoptosis or, in some cases, 

neurodegeneration (Herrero-Mendez et al., 2009). 

Meanwhile, astrocytes, which possess high-affinity 

glucose transporters (GLUT1), exhibit greater glycolytic 

activity compared to neurons (Figure 2). The enzyme 

PFKFB3 is active in astrocytes, facilitating extensive 

glycolysis and, consequently, high lactate production 

(Magistretti e Allaman, 2015). This elevated lactate 

production is further supported by the widespread expression 

of lactate dehydrogenase, specifically the LDH5 isoform, and 

pyruvate dehydrogenase kinase 4, which inhibits the activity 

of pyruvate dehydrogenase (PDH), thereby reducing pyruvate 

synthesis and reprogramming the cellular metabolic state to 

enhance lactate production (Halim et al., 2010). The lactate 

produced by astrocytes is then transported to neurons via 

monocarboxylate transporter 4 (MCT4), present in 

astrocytes, and absorbed by monocarboxylate transporter 2 

(MCT2), present in neurons. Subsequently, neurons utilize 

this metabolic intermediate to continue the oxidative process, 

generating ATP and ensuring metabolic support for various 

neuronal components, including the soma, synapses, and 

nodes of Ranvier (Bouzier‐Sore et al., 2006; Vandoorne, 

Bock, De e Bosch, Van Den, 2018). 

Oligodendrocytes, in turn, play a crucial role in the 

metabolic support of the axonal regions associated with the 

myelin sheath, particularly in motor neurons(Philips e 

Rothstein, 2017). Specifically, oligodendrocytes exhibit high 

expression levels of monocarboxylate transporter 1 (MCT1), 

which facilitates the transport of lactate, ketone bodies, 

pyruvate, and H⁺ ions across the plasma membrane according 

to their concentration gradient towards the neurons, utilizing 

MCT2 transporters (Pierre et al., 2000), as seen in figure 2. 

In this way, oligodendrocytes help maintain the metabolic 

state of neurons by supplying energy, particularly in the form 

of lactate, through transporters such as MCT1, thereby 

promoting the proper functioning of neural structures (Lee et 

al., 2012).  

Astrocyte Metabolic Reprogramming in ALS: A Link to 

Neuroinflammation and Neuronal Death 

Astrocytes, derived from induced pluripotent stem 

cells (hiPSCs), are glial cells of fundamental importance, as 

they enable the metabolic supply to motor neurons. Thus, a 

close link can be established between astrocyte mitochondrial 

activity and neuronal survival (Cassina et al., 2021). In the 

pathogenesis of ALS, there is widespread metabolic 

dysfunction in astrocytes, commonly associated with the 

SOD1 mutation (Martinelli et al., 2025). This leads to the 

activation and release of cytokines such as CXCL1, IL-6, and 

IL-8, which in turn promote the activation of the transcription 

factor associated with inflammatory processes, NF-κB. This 

process corroborates the triggering of cell-autonomous 

reactive transformation, resulting in the metabolic 

reprogramming of astrocytes and contributing to the 

development of the neuroinflammatory stage observed in 

ALS (Taha et al., 2022). 

In the pathogenesis of ALS, SOD1 mutant astrocytes 

exhibit neurotoxic behavior, primarily targeting motor 

neurons which are initially affected due to their metabolic 

vulnerability and high energy demand.(Díaz-Amarilla et al., 

2011). This neurotoxicity is attributed to morphometric 

changes in astrocytes, which can promote irreversible neural 

damage by recruiting Bax-dependent cellular machinery (a 

pro-apoptotic protein), leading to neuronal death via 
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apoptosis (Nagai et al., 2007). Additionally, these astrocytes 

enhance the expression of the glial fibrillary acidic protein 

(GFAP) promoter, particularly in the ventral horn, which is 

atrophied due to the drastic degeneration of motor neurons 

(Mastrangelo et al., 2023). SOD1 mutant astrocytes also 

impair lactate transport to neurons, resulting in metabolic 

dysfunction and a deficit in neuronal ATP production, 

thereby exacerbating the characteristic neuronal death seen in 

ALS (Ferraiuolo et al., 2011).  

This ATP deficit leads to the disruption of cellular 

ionic gradients, promoting hyperexcitability, prolonged 

depolarization, and neuronal death due to ATP depletion. The 

insufficient supply of lactate to neurons is the primary cause 

of increased axonal hyperexcitability, exacerbating 

degeneration and the progression of the disease. This 

hyperexcitability can also lead to overactivation of the 

ATPase-dependent Na⁺-K⁺ pump, resulting in increased ATP 

consumption and subsequent cell death due to ATP depletion, 

generating a positive loop (Ngo e Steyn, 2015). Therefore, 

astrocytes play a significant role in the development of ALS 

particularly in the context of SOD1 mutations. The alteration 

of their physiological function, particularly regarding the 

proper transport of lactate to neurons, results in metabolic 

deficiency and exacerbates the neural degeneration 

characteristic of ALS (Lee et al., 2012). 

Mitochondrial Dynamics in ALS: Implications for 

Microglial Activation and Neuronal Viability 

Although microglial function is essential for the 

survival of motor neurons, studies involving bone marrow-

derived microglia transplantation have shown that the 

elimination of macrophages using clodronate liposomes 

increased the survival of neurons in the CNS (Honda et al., 

2022). However, when this transplantation prioritized the 

acquisition of M2-type microglia, there was an improvement 

in ALS prognosis in mice (EPPERLY et al., 2019). In this 

context, a reduction in the expression of pro-inflammatory 

genes, such as Nos2 and IL-6, was observed, alongside an 

increase in anti-inflammatory genes, such as Arg1 and Mrc1 

(Kobashi et al., 2022). This indicates that macrophage-

mediated inflammation, potentially from the M1 

subpopulation, may accelerate ALS progression (Dyke, Van 

et al., 2016). 

Molecularly, therapy with dimethyl fumarate and H-

151, compounds with anti-inflammatory activity, has been 

reported to reduce pro-inflammatory cytokines such as IL-1β, 

IL-6, IL-15, IL-23A, and IFN-γ, potentially indicating the 

activation of the cGAS-STING pathway(Zamiri et al., 2023). 

However, the role of microglia in the development of ALS 

remains inconsistent. Regarding signaling molecules 

produced by microglia, while some studies cite the 

involvement of insulin-like growth factor 1 (IGF1) in 

promoting microglial invasion in the sciatic nerve and 

improving inflammation in ALS (Ji et al., 2018), other studies 

point to macrophage migration inhibitory factor (MIF1), a 

pro-inflammatory cytokine previously recognized as a 

chemoattractant, which now appears to have a new role as a 

chaperone (Leyton-Jaimes, Kahn e Israelson, 2018). The 

chaperone activity of MIF1 is particularly important for its 

ability to reduce protein aggregates formed in the cytoplasm 

(Basile et al., 2020); in this context, the delivery of MIF1 in 

adult SOD-ALS mice via adeno-associated virus (AAV) 

delayed disease progression and increased survival (Alfahel 

et al., 2024). Interestingly, the role of MIF1 as an adjuvant in 

ALS progression is closely linked to mitochondrial activity, 

as mitochondria are responsible for releasing the apoptosis-

inducing factor (AIF), which binds to MIF1, directing it to the 

cell nucleus where it induces genomic DNA fragmentation 

and subsequent cell death (Park et al., 2020). 

Spatially, microglia in ALS patients tend to 

concentrate in the motor cortex and subcortical white matter 

(Togawa et al., 2024). The stimulation of the RAGE 

(Receptor for Advanced Glycation End Products) receptor in 

microglia is associated with increased macrophage 

infiltration, as this receptor is also present in neurons and 

astrocytes. Deletion of RAGE in microglia in male ALS 

models has been shown to delay disease progression, 

highlighting the importance of this receptor in the 

pathogenesis of ALS (MacLean et al., 2021). Biomarkers 

such as chitotriosidase have been identified as potential 

indicators for the stratification of ALS patients (Steinacker et 

al., 2018), reflecting the presence of pro-inflammatory 

macrophages that produce pro-inflammatory cytokines, 

thereby influencing gluconeogenesis, lipolysis, and fatty acid 

oxidation (Martinez-Merino et al., 2018). Similarly, 

advanced glycation end products (AGEs) are also described 

as being closely linked to ALS progression, contributing to 

pro-inflammatory macrophage infiltration and subsequent 

neuronal death (MacLean et al., 2021). 

Mitochondrial dysfunction is closely linked to ALS. 

Mutation in C9orf72 gene for instance, one of the most 

observed mutations in ALS, impairs the OXPHOS pathway, 

particularly by hindering the efficient assembly of complex I 

of the phosphorylation chain (Wang et al., 2021). Complex 

deficiency I can increase the NADH/NAD⁺ ratio, decrease 

TCA cycle activity, and elevate the AMP/ATP ratio. The 

excess AMP leads to increased phosphorylation of AMPK, 

which inhibits the mechanistic target of rapamycin complex 

1 (mTORC1) pathway (Straub, Weraarpachai e Shoubridge, 

2021). In this context, dysfunction in autophagy, particularly 

in C9-ALS, has been associated with the prevention of 

lysosomal vesicle fusion with the autophagosome 

(Corrionero e Horvitz, 2018), further impairing the 

degradation of dysfunctional mitochondria. Additionally, 

mitochondrial dysfunction characterized by increased 

oxidative stress, mitochondrial fragmentation, and altered 

mitochondrial connectivity can be mitigated by treatment 

with the pTau-S396 protein, primarily linked to microtubule 
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structure (Petrozziello et al., 2022). A more robust cellular 

transport structure can enhance various cellular processes that 

promote cell health, such as vesicle transport and autophagy, 

thereby preventing the accumulation of dysfunctional 

mitochondria that contribute to premature cell death 

(Petrozziello et al., 2022), improving nucleus-cytoplasmic 

communication (Mann et al., 2023), and facilitating 

mitochondrial motility through the axonal space for more 

efficient energy delivery (Esperante et al., 2024). 

Unlike the predominantly ALS-promoting functions 

of macrophages, oligodendrocytes exhibit significant 

neuroprotective activity by providing physical and energetic 

support to neurons. Demyelination is often cited as a 

contributing factor to ALS progression (Minj, Upadhayay e 

Mehan, 2021; Yusuf et al., 2022). In this context, a pro-

inflammatory profile is critical for the loss of oligodendrocyte 

viability. Unlike multiple sclerosis, which has a more direct 

etiology related to myelination and autoimmune 

characteristics, in ALS the activation of the STAT3 and 

mTOR pathways, coupled with a reduction in the PPARγ 

pathway, has been linked to increased remyelination and 

improvements in behavioral, motor, and cognitive functions, 

along with reduced neuroinflammation (Kumar et al., 2024). 

This association with the inflammatory profile is further 

supported by observations of improved ALS prognosis in 

patients treated with Acetyl-11-keto-beta Boswellic Acid 

(AKBA), a potential activator of the Nrf2/HO-1 pathway, 

which offers neuroprotective effects (Minj, Upadhayay e 

Mehan, 2021). Additionally, viral elements integrated into the 

human genome, particularly HERV-K, are implicated as 

significant contributors to oligodendrocyte death, primarily 

through necroptosis mediated by Mixed-Lineage Kinase 

Domain-Like protein (MLKL) (Curzio, Di et al., 2020). 

Oligodendrocytes have been identified as important 

early markers of ALS, particularly in individuals exhibiting 

motor symptoms, showing signs of activation even before 

astrocytes or microglia (Golia et al., 2024). This activation is 

attributed to signaling through EVs. Furthermore, exposure 

of the human oligodendrocyte cell line, MO3.13, to 

cerebrospinal fluid (CSF) from ALS patients has been shown 

to reduce their viability, primarily by decreasing the 

production of neuroprotective factors such as glial cell line-

derived neurotrophic factor (GDNF) and brain-derived 

neurotrophic factor (BDNF) (Ramya et al., 2023). Similarly, 

myelin-forming cells in the peripheral nervous system (PNS), 

known as Schwann cells (SCs), also provide protective 

support to neurons; SCs offer special protection against 

oxidative stress-induced damage by producing 

peroxiredoxin-1 (Yamamuro-Tanabe et al., 2023). 

Conversely, SCs have been implicated in exacerbating ALS, 

particularly through the activation of the c-KIT receptor in 

macrophages via the production of colony-stimulating factor 

1 (CSF1) and interleukin 34 (IL-34), which is crucial for the 

increased infiltration of pro-inflammatory macrophages into 

the nerve (Trias et al., 2020). 

In addition to the connection between mitochondria 

and inflammation, particularly when mediated by ROS, 

mitochondria are also closely associated with protein 

synthesis. In this context, the physical connection between 

mitochondria and the endoplasmic reticulum (ER) via 

mitochondria-associated membranes (MAM) facilitates 

signaling in response to diminished mitochondrial 

metabolism, which can lead to ER stress by disrupting Ca²⁺ 

signaling (Zhu et al., 2024). Additionally, improvements in 

ER stress have been associated with the modulation of the c-

Jun N-terminal kinase (JNK) pathway, a crucial regulator of 

apoptosis, resulting in neuroprotection (Bos et al., 2019). 

Furthermore, the reduction of mitochondria has been 

identified as an indicator for axonal reduction and 

demyelination (Esperante et al., 2024) although its role in 

ALS remains to be established.  

In summary, mitochondrial activity is crucial in the 

progression of ALS, primarily by inducing pro-inflammatory 

states in microglia, reducing energy supply from astrocytes, 

and compromising neuronal structures by impairing 

oligodendrocyte function. Mitochondrial dysfunction is 

primarily characterized by the accumulation of amyloid 

protein structures in the mitochondrial membrane, 

dysfunctional assembly of oxidative phosphorylation 

complexes, and the persistent production of ROS. These 

factors collectively lead to a metabolic shift from OXPHOS 

to glycolytic pathways, resulting in progressive neuronal 

death over time. 

Pathological mechanisms associated with mitochondrial 

dysfunction in ALS 

Mitochondria are the primary organelles responsible 

for energy synthesis (through ATP synthesis) and are 

significantly affected by increases in intracellular ROS. The 

elevation of ROS leads to mitochondrial dysfunction, which 

can indicate the degree of neuropathic progression in ALS. 

One of the first mechanisms observed in ALS is the 

inappropriate intracellular elevation of sodium (Na⁺) and 

calcium (Ca²⁺) cations during neuronal stimulation. These 

characteristics are similar to those observed in other neuronal 

disorders, such as long-term neurodegeneration in 

Alzheimer’s disease, Parkinson’s disease, and Huntington’s 

disease (Zündorf e Reiser, 2011). This cation imbalance 

results in reduced ATP synthesis, which, in turn, exacerbates 

ROS production, impairing the OXPHOS pathway and 

causing further mitochondrial damage, ultimately leading to 

neuronal death (Anoar, Woodling e Niccoli, 2021). 

Mitochondrial dysfunction contributes to cell death via both 

intrinsic and extrinsic apoptotic pathways. In the intrinsic 

pathway, the release of proteins from mitochondria activates 

caspase-3, while in the extrinsic pathway, the binding of 
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specific ligands to FAS and DR6 receptors activates caspase-

8, resulting in apoptosis (Jhanji et al., 2021). 

In molecular terms, a reduction in the activity of 

complexes I, II, III, and IV of the electron transport chain 

leads to decreased ATP concentration(Vandoorne, Bock, De 

e Bosch, Van Den, 2018). Complex I of the oxidative 

phosphorylation pathway oxidizes NADH, resulting in the 

reduction of ubiquinone in the inner mitochondrial matrix. 

The energy generated during this process is essential for the 

translocation of protons across the membrane, contributing to 

the establishment of a negative membrane potential. 

Additionally, the leakage of electrons during this process to 

oxygen contributes to the increased synthesis of cellular 

superoxide. While the exact mechanism underlying the 

dysfunction of complex I remain unclear, it is known that 

ROS induces oxidative stress, which damages proteins and 

adversely affects the functionality of complex I (Ghiasi et al., 

2012). 

ALS impacts the CNS in ways that disrupt energy 

metabolism, ultimately leading to neuronal death. Notably, 

glycolysis is reduced during the symptomatic stages of the 

disease in both the cortex and spinal cord. This reduction can 

be demonstrated using radioactive carbon (C13) in glucose, 

revealing decreased levels of cytosolic metabolites derived 

from glucose in the early and intermediate stages of ALS. 

Additionally, the decline in the neurotransmitter gamma-

aminobutyric acid (GABA) in the spinal cord correlates with 

the reduction in glycolytic activity. The deficiency of 

essential metabolites required for the TCA cycle results in 

decreased levels of branched-chain amino acids and tyrosine, 

highlighting the CNS's energy demands in the context of the 

disease. Furthermore, in cases of neuronal metabolic 

dysfunction or motor neuron death, there is a reduction in N-

acetyl-aspartate (NAA) levels; the spinal cord utilizes this 

substrate to meet its energy metabolism needs (Tefera e 

Borges, 2019). Aspartate, an excitatory neurotransmitter, 

serves as a potential biomarker for ALS progression. In the 

early stages of the disease, serum levels of aspartate are either 

decreased or remain normal; however, in chronic stages, an 

increase in aspartate and GABA levels has been observed, 

resulting in an excitatory-inhibitory imbalance that 

contributes to reduced patient survival (Jordan et al., 2018). 

In ALS, neuronal degeneration is largely attributed 

to neurotoxicity caused by elevated levels of ammonia, which 

results from dysfunctions in the hepatic urea cycle, crosses 

the blood-brain barrier and accumulates in neurons, 

ultimately leading to neurodegenerative processes (Parekh, 

2015). During states of hyperammonemia, a risk factor for 

sporadic amyotrophic lateral sclerosis (ALS), there is a 

notable reduction in ATP production in the brain due to 

decreased levels of high-energy phosphates, which inhibits 

proton transport to the malate-aspartate shuttle. High 

concentrations of ammonia lead to the deactivation of the 

Na⁺/K⁺-ATPase pump, resulting in increased sodium and 

intracellular water influx. This causes tissue swelling, 

particularly in astrocytes, along with proteolysis, 

mitochondrial degradation, and the production of ROS 

(Gropman, Summar e Leonard, 2007). Astrocytes play a 

critical role in recovering glutamate (Glu) by converting it 

into glutamine (Gln) through the ATP-dependent enzyme 

glutamine synthetase (GS) (Yuan, Zhang e Li, 2017). The 

excess glutamine in the mitochondria of astrocytes is 

subsequently metabolized into NH₄ and Glu by the 

mitochondrial enzyme phosphonoacetate gamma-

aminotransferase (PAG) (Zielińska, Albrecht e Popek, 2022). 

The exacerbated synthesis of glutamate, responsible 

for the excitation of motor neurons, results in cell damage. In 

ALS, and different neurodegenerative diseases, GABA and 

glycine are the main inhibitory molecules counteracting 

glutamatergic effects (Diana et al., 2017; Ramírez-Jarquín e 

Tapia, 2018). Glutamate-mediated excitotoxicity arises from 

the exacerbated influx of Ca2+ into motor neurons by the 

ionotropic receptor activated by glutamic acid (Caioli et al., 

2013) (Figure 3). The inhibition of GABAergic receptors 

leads to a decrease in Mg2+, which results in opening the 

NMDA receptors, a process that facilitates the entrance of 

Ca2+, which when in excess promotes neuronal death (Hou 

et al., 2020; Sunico et al., 2011). 

The Intersection of Genetic Mutations and Energy 

Metabolism in ALS: Implications for Biomarker 

Discovery 

ALS is a progressive neurodegenerative disease with 

a familial origin in 10-15% of cases (Marchi, De et al., 2023). 

Among the more than thirty genes and loci associated with its 

pathogenesis, most exhibit dominant inheritance, although 

some display autosomal recessive characteristics (like SOD1 

and FUS) and X-linked inheritance (such as UBQLN2) 

(Mathis et al., 2019). In this context, genetic factors seem to 

influence the mutation frequency in ALS. In the Asian 

population with familial ALS, a significant proportion of 

causative mutations are found in SOD1 (30%), FUS (6.4%), 

and other known and unknown genes (59.8%). In contrast, 

Europeans often exhibit mutations in C9ORF72 (33.7%), 

SOD1 (14.8%), and other genes (44.5%) (Veldink, 2017). 

Mitochondrial damage, as mentioned before, is a 

significant factor in ALS development (Cozzolino et al., 

2013), particularly due to its role in reducing ATP production 

and increasing oxidative stress, both of which affect motor 

neuronal functions (Miquel et al., 2012; Szelechowski et al., 

2018). Superoxide dismutase is a crucial antioxidant enzyme 

that protects cells from ROS by converting superoxide into 

oxygen and hydrogen peroxide. Reduced levels or mutations 

affecting their catalytic activity can have serious phenotypic 

consequences (Azadmanesh e Borgstahl, 2018). This 

misfolding and aggregation of this enzyme are well-

documented in familial ALS cases (Saccon et al., 2013), often 

occurring due to sumoylation or oxidation (Fei et al., 2006; 
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Trist et al., 2022). In addition to ROS, the erroneous disulfide 

bond breakage or the loss of metal cofactors also contributes 

to misfolding, affecting pathology (Tsekrekou et al., 2024). 

This “prion-like” behavior of SOD1 has been described as 

contributing to the spread of motor neuron degeneration 

through corticospinal pathways (Ayers et al., 2016). 

However, recent studies have shown that genetic ablation of 

the SOD1G373 transgene in corticospinal neurons is associated 

with protection against degeneration without affecting the 

mutant SOD1 load in the spinal cord (Scekic-Zahirovic et al., 

2021). 

ALS also affects neuronal cell signaling. In this 

context, glutamate-mediated excitotoxicity is considered a 

potential pathogenic mechanism (Mathis et al., 2019). 

Oxidative stress and dysregulation of iron metabolism in ALS 

patients and animal models with SOD1 mutations lead to 

excessive glutamate efflux, glial cell toxicity, and 

disturbances in calcium homeostasis (Hayashi, Homma e 

Ichijo, 2016). Regarding energy supply, motor neurons are 

particularly sensitive to even small reductions in energy and 

rely heavily on ATP for intracellular biochemical processes 

(Mathis et al., 2019). Consequently, the diminished 

functionality of sodium-potassium pumps (due to decreased 

ATP levels) results in slow depolarization and 

hyperexcitability (Mathis et al., 2019). This condition is 

exacerbated by persistent sodium channels, leading to 

increased intracellular calcium levels and subsequent 

apoptosis(Le Masson, Przedborski e Abbott, 2014). 

FUS regulates the transcription of SOD2, an 

essential antioxidant located in the mitochondria, thereby 

linking oxidative stress with motor neuron dysfunction (Dhar 

et al., 2014). Additionally, FUS is involved in RNA 

processing and transcription regulation, and its fusion with 

CHOP contributes to tumor development (Brumbaugh-Reed, 

Aoki e Toettcher, 2024). The first ALS cases associated with 

FUS were described in the early 2000s (Vance et al., 2009), 

where impaired stress granule responses due to FUS mutants 

were identified as a factor contributing to motor neuron 

dysfunction (Li et al., 2013). The formation of cytoplasmic 

FUS inclusions, which resemble stress granules and contain 

temporarily inactive RNAs and translation proteins, promotes 

cell survival under stress by redistributing translation 

resources (Mathis et al., 2019). Many familial ALS mutations 

are located on chromosome 16, leading to aberrant 

localization of FUS (from the nucleus to the cytoplasm) and 

the formation of protein inclusions (Gal et al., 2011). This 

suggests two possible pathogenic mechanisms: impairment of 

FUS's normal nuclear function and toxic cytoplasmic 

accumulation (Yang et al., 2014). Toxicity may be influenced 

by PP2A and GSK3; a genomic screening study using 

Drosophila motor neurons linked the loss of function or 

inhibition of these proteins to FUS-associated lethality, which 

rescued significant disease phenotypes in mice and ALS 

patient motor neurons (Tziortzouda et al., 2024). 

Understanding the correlation between genetic background 

and energy metabolism is crucial for identifying biomarkers 

and developing strategic therapies for ALS prevention and/or 

control in both familial and sporadic forms (Burg e Bosch, 

Van Den, 2023). 

Moreover, C9ORF72, located on chromosome 9 

(9p21), is a key gene related to monogenic forms of ALS. Its 

pathogenic mutation involves an abnormal hexanucleotide 

repeat expansion (G4C2) in the gene's first intron (Sellier et 

al., 2024). Following DNA damage, the C9ORF72 protein is 

rapidly recruited to double-strand break sites, where it 

regulates genetic repair via the DNA-PK complex and 

initiates DNA damage response signaling (He et al., 2023). In 

ALS, C9ORF72 mutations lead to the formation of secondary 

structures with expanded hexanucleotide repeats (HRE), 

which create stable G-quadruplexes in both DNA and RNA 

(Sellier et al., 2024; Su et al., 2014). The formation of G4C2 

repeats generates RNA foci that bind to expanded DNA 

repeats, disrupting genomic stability and transcription (Lee et 

al., 2013; Sellier et al., 2024). RNA neurotoxicity likely 

arises from these foci sequestering essential RNA-binding 

proteins (RBPs), impairing RNA regulation and causing 

cellular dysfunction (Sellier et al., 2024). 

G4C2 (or G2C4) repeat expansion can also translate 

into repetitive dipeptide proteins (DPRs) observed in the 

motor neurons of ALS patients. Toxic DPR polyGA activates 

programmed cell death and TDP-43 cleavage, establishing a 

link to ALS (Lee et al., 2013; Sellier et al., 2024). In vivo, the 

expression of DPR significantly reduces with DDX3X 

overexpression, resulting in the absence of 

neuroinflammation or neurotoxicity (Fu et al., 2024). 

TAR DNA-binding protein 43 (TDP-43), encoded 

by the TARDBP gene on chromosome 1 (1p36.22), binds 

both DNA and RNA (Wang e Sun, 2023). This nuclear 

ribonucleoprotein is essential for RNA splicing, gene 

transcription regulation, mRNA stability, biosynthesis, and 

nuclear body formation (Kametani et al., 2016), frequently 

altered in familial ALS (Meyer, 2021). Neurodegeneration in 

ALS is likely caused by either a toxic gain of function and 

abnormal TDP-43 or a loss of normal TDP-43 function, as 

aggregated TDP-43 is characterized by improper 

phosphorylation, truncation, and cytoplasmic mislocalization 

(Mathis et al., 2019). TDP-43 undergoes liquid-liquid phase 

separation, contributing to the formation of stress granules 

(SGs) associated with RNA metabolism and the cellular stress 

response (Song, 2024). 

UBQLN2, linked to the X chromosome, plays a role 

in protein degradation via the ubiquitin-proteasome system 

(Renaud et al., 2019). Pathogenic mutations in UBQLN2 

promote the formation of amyloid-like aggregates, 

contributing to neurotoxicity (Sharkey et al., 2018). TBK1 

kinase, which is involved in autophagy and innate immunity, 

phosphorylates substrates such as OPTN and p62, which are 

critical for selective autophagy in ALS (Mathis et al., 2019). 
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Loss of function or mutations in TBK1 increase the risk of 

ALS and disrupt interferon responses in microglia and 

astrocytes  (Cui et al., 2018). TBK1 mutations also attenuate 

the interferon response in microglia and astrocytes, 

potentially slowing neurodegenerative progression and 

enhancing motor neuron survival (Mayl e Sreedharan, 2020). 

In conclusion, the relationship between genetic 

mutations and energy metabolism in ALS reveals the 

complexity of the disease and its potential for biomarker 

discovery. Mutations in key genes, such as SOD1, FUS, 

C9ORF72, and TDP-43, alter metabolism and neuronal 

functions, as well as contribute to mitochondrial dysfunction, 

oxidative stress, and dysregulation of bioenergetic 

homeostasis. These factors ultimately lead to the 

degeneration of motor neurons and the progression of ALS. 

Understanding the mechanisms underlying these mutations 

and their cellular impacts is essential for advancing our 

understanding of the disease. 

 

CONCLUDING REMARKS 

In this review, we summarize the knowledge on how 

the interaction between microglia and mitochondrial 

metabolism contributes to the development and progression 

of ALS. This interaction between microglia and the 

neurodegenerative environment, mediated by metabolic 

alterations, appears to be a key factor in the pathogenesis of 

ALS, suggesting that modulation of mitochondrial 

metabolism may represent a promising target for therapeutic 

interventions. 

The genetic mutations associated with this disease, 

such as C9ORF72, SOD1, TARDBP, and FUS, reveal critical 

cellular pathways involved in the pathology, including RNA 

metabolism, oxidative stress, and mitochondrial dysfunction. 

However, more studies are needed to fully elucidate how 

these mutations affect the interaction between microglia and 

mitochondria and how this can be exploited for the therapy's 

development. 

In the future, research into the link between 

microglia and mitochondrial metabolism could open new 

frontiers in ALS treatment. Interventions aimed at mitigating 

metabolic responses in microglia have the potential to slow 

disease progression and improve patients’ quality of life. 

Therefore, ongoing research into the cellular and molecular 

mechanisms underlying ALS remains crucial for advancing 

therapeutic innovations. 
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Figure Legends 

 
Figure 1. Metabolic state of pro-inflammatory microglia in neuroinflammation. In states of neuroinflammation, such as ALS 

and other neurodegenerative conditions, microglia adopt a pro-inflammatory profile, favoring glycolysis as their primary energy 

source while reducing their dependence on oxidative phosphorylation (OXPHOS). This increase in glycolysis elevates nicotinamide 

adenine dinucleotide (NADH) levels, promoting C-terminal-binding protein 1 (CtBP) dimer formation and releasing p300, which 

acetylates NF-κB, resulting in the expression of pro-inflammatory cytokines. Hypoxia exacerbates glycolysis, increasing pyruvate 

and acetyl-Coenzyme A (acetyl-CoA) levels. Additionally, the mammalian target of rapamycin (mTOR) - hypoxia-inducible factor-

1α (HIF-1α) pathway is activated, enhancing glucose uptake and amplifying nuclear factor kappa-light-chain-enhancer of activated 

B cells (NF-κB)-mediated cytokine production. While these metabolic changes are observed in ALS, they represent a more general 

mechanism that occurs in various neurodegenerative conditions. 
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Figure 2. Under physiological conditions, there is extensive interaction between astrocytes and the metabolic support of 

neurons. Glucose from blood capillaries enters the astrocyte via glucose transporter protein type 1 (GLUT1) and is metabolized 

through the glycolytic pathway until it is converted to lactate by the enzyme lactate dehydrogenase (LDH) isoform 5 (LDH5). This 

lactate is then transported to the neuron via monocarboxylate transporter 4 (MCT4) presents on the astrocyte membrane and 

subsequently taken up by monocarboxylate transporter 2 (MCT2) on the neuron. The lactate is then converted back to pyruvate, 

allowing the continuation of the tricarboxylic acid cycle (TCA) and the oxidative phosphorylation pathway, thereby ensuring an 

adequate metabolic supply for neurons. Glu – glucose; Gln – Glutamine; GLS - Glutaminase; GS - The α subunit of stimulatory G 

protein-coupled receptor; ADP – adenosine diphosphate. 

 
Figure 3: Excitotoxicity from exacerbated glutamate release leads to neuronal death. (A) The exacerbated release of glutamate 

(Glu) (blue circles) into the synaptic cleft by glutamatergic neurons generates an excitotoxic effect on motor neurons; the excitotoxic 

effect generates an influx of Ca2+, resulting in the opening of the NMDA receptor (1) and inhibition of GABAergic receptors. In the 

process, there is a deficit of the Mg2+ cation responsible for blocking the NMDA receptor, leading to neuronal death. (B) Astrocytes 

are the main recipients of residual glutamate from synapses; glutamate is then converted into glutamine by the enzyme glutamine 

synthetase (GS) and transported to the mitochondria. In the mitochondria, excess glutamine (Gln) is converted into Glu and 

ammonium (NH4) by the enzyme phosphonoacetate gamma-aminotransferase (PAG). In the context of ALS, increased ammonia 

levels causes damage to the mitochondria with NH4 leakage, inhibiting the Na+K+ATPase pump (2), resulting in an influx of sodium 

into the astrocyte, and by osmotic difference, water (H2O) moves into the cell to dilute the sodium charges, generating edema and 

swelling processes in the tissue. (C) In ALS, there is a reduction in the concentration of ATP generated in the electron transport 

chain. In general, this is due to the loss of functionality of complex I, which has yet to be elucidated. The escape of electrons to 

oxygen leads to the synthesis of superoxide (ROS), causing mitochondrial damage and the loss of functionality of complex I.  


